gabarito para curvas - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

gabarito para curvas - перевод на русский

IDEALIZAÇÃO MATEMÁTICA DO TRAÇO DEIXADO POR UM PONTO EM MOVIMENTO
Adunco; Curvas; Curvas de superfície

gabarito para curvas      
(путевой) шаблон для кривых
gabarito para curvas      
- (путевой) шаблон для кривых
para         
PÁGINA DE DESAMBIGUAÇÃO DE UM PROJETO DA WIKIMEDIA
Pará (desambiguação); Para (desambiguação); Pará (futebolista)
(резин.) пара-каучук

Определение

ПАРАБЕЛЛУМ
а, м.
Автоматический скорострельный пистолет особой системы.||Ср. БРАУНИНГ, БУЛЬДОГ, ВАЛЬТЕР, КОЛЬТ, МАУЗЕР, НАГАН, РЕВОЛЬВЕР.

Википедия

Curva

Em matemática, uma curva ou linha curva é, em termos gerais, um objeto semelhante a uma linha reta, mas que não é obrigatoriamente retilíneo. Tecnicamente, uma curva é o lugar geométrico ou trajetória seguida por um ponto que se move de acordo com uma ou mais leis especificadas, neste caso, as leis comporão uma condição necessária e suficiente para a existência do objeto definido. Frequentemente há maior interesse nas curvas em um espaço euclidiano de duas dimensões (curvas planas) ou três dimensões (curvas espaciais).

Em tópicos diferentes dentro da matemática o termo possui significados distintos dependendo da área de estudo, então o sentido exato depende do contexto. Um exemplo simples de uma curva é a espiral, mostrada a direita. Um grande número de outras curvas já foi bem estudado em diversos campos da matemática.

O termo curva também tem vários significados na linguagem não matemática. Por exemplo, ele pode ser quase um sinônimo de função matemática (como em curva de aprendizado), ou gráfico de uma função (como em curva de Phillips)

Se o intervalo for fechado e as imagens dos pontos inicial e final coincidirem a curva diz-se fechada. Se a função for injectiva (exceptuando a possibilidade de a curva ser fechada), a curva diz-se simples. A curva pode ainda ser adjectivada com as propriedades adicionais que tenha a função. Por exemplo, se a função for diferenciável, a curva diz-se diferenciável, etc.